Summary of "No Bull Music Theory For Guitarists" vol. 2 by James Shipway

Volume 2, Chapter 1: Learning the Notes on the Fretboard

1. Step 1: Learn the E and A String Roots

- Start by memorizing the notes on the **low E string (6th)** and **A string (5th)**, as they serve as reference points for much of the fretboard.
- Remember the rule:
 - B-C and E-F are only one fret apart
- All other adjacent natural notes are two frets apart, with a sharp (♯) or flat (♭) between them
- Mnemonic: "Big Cats Eat Fish" helps you remember which note pairs have no sharp/flat between them.

2. Step 2: Use Octave Patterns to Find Notes on Other Strings

• Once you know your E and A string notes, use these **octave shapes** to find the same notes on higher strings:

Starting String	Destination String	Fret Distance
E string A string D string G string	D string G string B string high E string	+2 frets +2 frets +3 frets +3 frets

• These relationships are **consistent across the fretboard** and help you quickly map out all note locations.

Volume 2, Chapter 2: Suspended (Sus) Chords

1. What Are Sus Chords?

- "Sus" is short for **suspended**.
- In a sus chord, the **3rd of the chord is removed** and replaced by either the **2nd** or the **4th** scale degree.
- This creates a sound that is **neither major nor minor**, giving the chord a more **open**, **unresolved** quality.

2. Types of Sus Chords

- Sus4 chord:
 - Formula: Root 4th 5th
 - Example: Dsus4 = D G A (F \sharp is replaced by G)
- Sus2 chord:
 - Formula: Root 2nd 5th
 - Example: Dsus2 = D E A (F \sharp is replaced by E)

3. Function and Usage

- Sus chords are often used as **temporary stand-ins** for major or minor chords.
- Because they lack a **3rd**, they don't have a clearly defined major or minor quality, which makes them useful for creating tension, color, or ambiguity in a progression.

4. More Examples

- A major scale: A, B, C♯, D, E, F♯, G♯
- Asus4 = A D E (C# replaced by D)
- Asus2 = A B E (C# replaced by B)

Volume 2, Chapter 3: Key Signatures

1. What Is a Key Signature?

- A key signature tells you how many sharps or flats are in a key—whether major or minor.
- It helps you quickly understand which notes are altered throughout a piece of music.
- For example:
 - G major has one sharp (F♯)
 - F major has **one flat** (B♭)
 - D major has two sharps (F♯ and C♯)

2. Relative Major and Minor Keys

- Every minor key shares its key signature with a relative major key.
 - They contain the **same notes**, but start from different root notes.
 - Example:
 - G major and E minor both have **one sharp**
 - A minor and C major both have no sharps or flats

3. Where to Find the Key Signature

- On standard notation (sheet music), the key signature appears at the **beginning of the stave**, right after the clef.
- It tells the performer which notes are sharped or flatted throughout the piece.

4. Practical Note for Guitarists

- Guitar chord charts and tab often **don't include key signatures**, even if the song clearly belongs to a key.
- It's still important to **understand key signatures**, especially when reading standard notation or understanding theory.

Volume 2, Chapter 4: Compound Intervals

1. What Are Compound Intervals?

- A compound interval is any interval that is larger than an octave.
- These intervals are commonly found in **extended chords** (like 9th, 11th, and 13th chords), which add rich color and complexity to harmony.

2. Naming Compound Intervals

- Compound intervals are really just basic intervals (2nd, 3rd, etc.) repeated in the next octave.
- You can think of them this way:

Compound Interval	Simple Equivaler
9th	2nd
10th	3rd
11th	4th
12th	5th

13th	6th
14th	7th

• In practice, the 9th, 11th, and 13th are the most commonly used in music.

3. Can Compound Intervals Be Altered?

- Yes, **just like basic intervals**, compound intervals can be **sharpened** (#) or **flattened** (b), but with some limitations:
- You can b9, #9, #11, b13
- But you **cannot b11** (it would just be a 3rd) or **#13** (it would duplicate the 7th)

4. Example: D Major Scale and Its Compound Intervals

- D major scale: $D E F \sharp G A B C \sharp$
- Compound intervals from D:
- 9th = E
- 11th = G
- 13th = B
- b9 = Eb
- #9 = E# (enharmonic to F)
- #11 = G#
- b13 = Bb

These intervals help build chords like D9, D11, D13, D♭9, D♯11, etc., and understanding them is essential for extended harmony.

Volume 2, Chapter 5: Make Awesome Chord Progressions with Triad Inversions

1. What Is a Chord Voicing?

- A **chord voicing** is the specific arrangement of notes in a chord, especially from **lowest to highest**.
- The way you **voice** a chord can dramatically affect how it sounds and how it connects to the next chord in a progression.

2. What Is a Chord Inversion?

- An **inversion** is a type of voicing where **something other than the root** is played in the **bass**.
- A **major triad** contains three notes: **root**, **3rd**, **and 5th**. These can be rearranged to create different inversions:

Bass Note	Inversion Type	Example (C major)
Root (C)	Root Position	С
3rd (E)	1st Inversion	C/E
5th (G)	2nd Inversion	C/G

3. Why Use Inversions?

- Inversions allow smoother transitions between chords, especially in the bass line.
- They help create **stepwise motion** instead of large jumps, which often sounds more musical.

Examples of Inversion Use in Progressions

- | G | Am | G/B | C | The bass moves $g \rightarrow a \rightarrow b \rightarrow c$ (a smooth ascending line)
- $|G|D/F\sharp|Em|D|$ The bass moves $g \to f\# \to e \to d$ (a smooth descending line)
- | F F/A | Bb Bb/D | F | Creates a beautiful circular bass motion.

4. How Slash Chords Work

- A slash chord (like C/E or A/C♯) means:
 - Play the chord before the slash
 - Use the **note after the slash** as the **bass note**
 - (These examples are C with e in the bass; A with c# in the bass)
- If you're not playing the bass (e.g., in a band), it's okay to **only play the main chord**—the bassist will handle the inversion.

Volume 2, Chapter 6: Major and Minor Add9 Chords

1. What Is an Add9 Chord?

- An **add9 chord** is a **triad (major or minor)** with an added **9th** (which is the same note as the 2nd scale degree, played an octave higher).
- It adds **color and brightness** to a basic chord, while keeping the chord's original identity intact.

2. Formulas

- **Major add9 chord** = 1 (root) + 3rd + 5th + 9th
 - Example: Cadd9 = C E G D
- Minor add9 chord = 1 + 63rd + 5th + 9th
 - Example: Cm(add9) = $C E_b G D$

3. Add9 vs. Sus2 Chords

- Add9 chords include a 3rd, which defines whether the chord is major or minor.
- Sus2 chords omit the 3rd, replacing it with the 2nd.
 - Example: Csus2 = C D G (no E)
 - -Cadd9 = C E G D
- While they can sound similar in some contexts, they are theoretically distinct.

4. Common Add9 Shapes (Open Chords)

Chord	Shape
Cadd9	x32030
Gadd9	3x0203
Aadd9	x02420
Eadd9	024100
Dadd9	xx0252
Fadd9	xx3213
Em(add9)	024000
Am(add9)	x02410

5. Barre Chord Add9 Examples (Stretchy but Useful)

- Gadd9 = 357433
- Gm(add9) = 357333
- Cadd9 = x35753
- Cm(add9) = x35743

6. When Not to Use add9s

- Be cautious using minor add9 chords on the **III chord** in a major key.
- Example: In the key of C, the iii chord is **E minor**, but adding an F♯ (the 9th) would clash with the key of C (which has F natural).
- In this case, Emin(add9) would likely sound wrong because F♯ is not in the key of C.

Volume 2, Chapter 7: The Circle of Fifths

A circle of fifths diagram places all 12 keys around a circle. As you move:

- Clockwise, each key goes up a perfect 5th (adds one sharp)
- Counterclockwise, each key goes up a perfect 4th (adds one flat)
- The terms "circle of fifths" and "cycle of fifths" mean the same thing.
- This tool is extremely helpful for understanding key relationships, building progressions, and navigating theory.
- Memorizing the circle makes you fluent in key changes, transpositions, and theory applications.

Five Common Uses for the Circle of Fifths

1. Practice Tool for Major Scales

- Start at C and play the C major scale.
- Move one step **clockwise** to **G**, then play the **G major scale**, and so on.
- Continue around the circle to practice all 12 keys.

2. Find Key Signatures

- To find how many sharps, move clockwise from C:
 - -1 step \rightarrow G major (1 sharp)
 - 2 steps → D major (2 sharps)
- To find how many flats, move counterclockwise from C:

- 1 step → F major (1 flat)
- -2 steps \rightarrow Bb major (2 flats)
- The number of steps from C = the number of sharps or flats in the key, depending on direction.

3. Find Relative Minor Keys

- To find a major key's relative minor, move three steps clockwise on the circle.
 - $C \text{ major} \rightarrow A \text{ minor}$
 - B♭ major → G minor
- This works for any major key:

Relative minor is always a minor 3rd below or three clockwise steps forward.

4. Find I–IV–V Progressions

- Pick any key on the circle as I.
 - The IV is one step back (counterclockwise)
 - The V is one step forward (clockwise)
- Example in **F major**:
 - -I = F
 - -IV = Bb
 - -V=C
- Example in **D**b **major**:
 - -I = Db
 - -IV = Gb
 - -V = Ab

5. Find II-V-I Progressions

- To find a II–V–I, start with your target I chord.
- Go 2 steps clockwise from the I to find the ii chord (minor).
- Go 1 step counterclockwise from the ii to find the V chord (dominant).
- Example in **F major**:
 - -ii = G minor
 - -V=C
 - -I = F
- Example in **D**b **major**:
 - ii = E♭ minor
 - -V = Ab
 - -I = Db

Volume 2, Chapter 8: Going Beyond Triads with Seventh Chords

Seventh chords are an essential extension of triads and are used extensively in jazz, pop, classical, and many other genres. This chapter introduces four common types of seventh chords:

1. Major 7 Chord (maj7)

Formula: Root + Major 3rd + Perfect 5th + Major 7th

- Example in **D major**: D, F♯, A, C♯
- Example in **B major**: B, D#, F#, A#

2. Dominant 7 Chord (7)

Formula: Root + Major 3rd + Perfect 5th + Minor 7th (b7)

- Example in D: D, F♯, A, C
- Example in F: F, A, C, Eb

Note: The dominant 7 is written simply as "7" (e.g. D7, A7)

3. Minor 7 Chord (m7)

Formula: Root + Minor 3rd (b3) + Perfect 5th + Minor 7th (b7)

- Example in **D**: D, F, A, C
- Example in **B**b: Bb, Db, F, Ab

4. Minor 7 Flat 5 Chord (m7b5)

Also called **half-diminished**, this chord sounds more unstable and is often used in jazz or minor ii–V–I progressions.

Formula: Root + Minor 3rd (♭3) + Diminished 5th (♭5) + Minor 7th (♭7)

- Example in **D**: D, F, Ab, C
- Example in **B**b: Bb, Db, Fb, Ab

Suggested Practice

It's strongly recommended that you write out all 48 chords:

- 12 maj7
- 12 dom7
- 12 min7
- 12 **m7b5**

Volume 2, Chapter 9: Using Seventh Chords to Decorate Progressions

Seventh chords add color and richness to otherwise basic progressions. In many styles, especially jazz and R&B, they're essential for creating a more sophisticated harmonic palette.

1. Replacing Triads with 7th Chords

You can often enhance a simple triadic progression by replacing each chord with its corresponding seventh chord. For example, in the key of C major:

Original triads:

C - Dm - Em - F (I-ii-iii-IV)

Upgraded with 7ths:

Cmaj7 – Dm7 – Em7 – Fmaj7

This kind of substitution doesn't always work in every situation (e.g., some rock or pop songs benefit from the simplicity and clarity of triads), but it's a powerful option, especially in jazz or fingerstyle arrangements.

2. Harmonizing the Major Scale with 7th Chords

If you build seventh chords off every scale degree in a major key, the quality of the chords always follows the same pattern:

Degree Roman Numeral 7th Chord Type

1	I	Мај7
2	ii	m7
3	iii	m7
4	IV	Мај7

Degree Roman Numeral 7th Chord Type

5 V **7** (Dominant)

6 vi m7

7 vii° m7b5 (Half-diminished)

So, in **C major**, the full set of 7th chords is:

Cmaj7, Dm7, Em7, Fmaj7, G7, Am7, Bm7b5

This is sometimes referred to as the "harmonized scale with 7ths" and is worth memorizing.

3. Real-World Examples of Seventh Chord Substitution

Example 1 – In G major:

Original: G - Em - Am - D

7th Version: Gmaj7 – Em7 – Am7 – D7

Example 2 – In A major:

Original: A – C#m – D – E

7th Version: Amaj7 – C \sharp m7 – Dmaj7 – E7 (or try **E7sus4** = E, A, B, D)

Example 3 – In E major:

Original: $E - F \sharp m - G \sharp m - A - C \sharp m - A - B7sus - B7$

7th Version: Emaj7 – F♯m7 – G♯m7 – Amaj7 – C♯m7 – Amaj7 – B7sus4 – B7

Seventh chords are **versatile**, **expressive**, and add depth—but they don't always suit distorted or heavily rhythmic styles.

4. Improvisation Over Seventh Chords

Improvising over 7th chords follows similar principles to improvising over triads:

- Maj7: Use the major scale or major pentatonic
- **m7**: Use the natural minor (Aeolian) or Dorian
- 7 (Dominant): Use Mixolydian
- m7b5: Use the Locrian mode (not yet covered in this volume)

5. Seventh Chords in Minor Keys

Just like with triads, you can derive the 7th chords of a **minor key** by starting with the **6th chord** of the major key and treating it as the tonic.

In C major, the vi chord is Am7, so:

Degree Chord

i Am7

ii° Bm7♭5

III Cmaj7

iv Dm7 v Em7

VI Fmaj7

VII G7

This is the harmonized natural minor scale with 7ths.

Volume 2, Chapter 10: More on Roman Numerals and Chord Progressions

1. Understanding Roman Numerals in Major Keys

In major keys, Roman numerals help describe the function and quality of chords:

Degree	Chord Type	Roman Numeral
1	Major	I
2	Minor	ii
3	Minor	iii
4	Major	IV
5	Major	V
6	Minor	vi
7	Diminished	vii°

When people say a "2–5–1" progression, they're referring to:

- ii = minor chord
- V = major (often dominant) chord
- I = major chord

So, in the key of C major, a 2-5-1 is: **Dm - G - C**

You can expand these to 7th chords (e.g., Dm7 - G7 - Cmaj7), but the Roman numerals describe the diatonic function more than the chord extensions.

2. Notation Conventions

- **Uppercase numerals** are typically used for major or dominant chords.
- **Lowercase numerals** may be used for minor or diminished chords (e.g., *ii, iii, vii*°). However, systems like John Mehegan's (preferred by Dennis and used here) write all Roman numerals in uppercase, regardless of chord quality.
- When labeling non-diatonic chords, you only need to notate deviations from the diatonic pattern. For example:

In C major:

Progression: **C – G – Fm**Roman Numerals: **I – V – IVm**

The "IVm" is a **minor chord on the 4th degree**, which normally would be major—so we indicate that explicitly.

In F major:

Progression: **F – D7 – Gm – C7**Roman Numerals: **I – VI7 – II – V7**

"VI7" is a non-diatonic dominant 7 chord on the 6th scale degree.

• In C major:

Progression: C - F - Ab - G

Roman Numerals: I - IV - bVI - V

• Longer progression example:

$$C - G - Bb - F - C - G - Eb - Bb$$

Roman Numerals: I - V - bVII - IV - I - V - bIII - bVII

Another example:

$$C-Gm-Bb-F-C-G-Eb7-Bb7$$

Roman Numerals: I - v - bVII7 - IV - I - V - bIII7 - bVII7

Note: When the **root of the chord is not in the key**, you indicate that with accidentals in the numeral (e.g., ЫII, ♯IV).

3. Minor Keys and Roman Numerals

In minor keys, the **3rd**, **6th**, **and 7th degrees are naturally flattened**, so you don't use flat symbols to notate them unless they are **altered** beyond what's already expected.

In C minor, the diatonic chords are:

Degree	Chord	Roman Numeral
1	Cm	İ
2	D°	ii°
3	Eb	III
4	Fm	iv
5	Gm	V
6	Ab	VI
7	Bb	VII

So, a progression like:

Cm - Bb - Ab - F

Would be labeled: i - VII - VI - IV

Notice "IV" is major, which is a departure from the expected iv minor, so it's noted with a capital Roman numeral.

Volume 2, Chapter 11: Modes

1. What is a Mode?

A **mode** is simply a type of **scale**, but specifically, it's a scale derived by starting on a different note of an existing scale—most commonly, a **major scale**. The major scale used to generate modes is called the **parent scale**. Although modes are foundational in music theory, students should be fluent in major and minor scales and pentatonics before diving deep into modal soloing.

2. Building Modes from the Major Scale

Using **C major** (C–D–E–F–G–A–B) as the parent scale, we can build seven modes by starting and ending on each successive degree:

Mode Name	Starts on	Notes in C Major	Roman Numeral
Ionian	С	C-D-E-F-G-A-B	1
Dorian	D	D-E-F-G-A-B-C	II
Phrygian	E	E-F-G-A-B-C-D	III
Lydian	F	F-G-A-B-C-D-E	IV
Mixolydian	G	G-A-B-C-D-E-F	V
Aeolian	Α	A-B-C-D-E-F-G	VI
Locrian	В	B-C-D-E-F-G-A	VII

Although all of these modes use the same notes as C major, they sound very different because of their **different tonal centers (root notes)**.

3. Interval Structure of Each Mode

To understand a mode's flavor, you must compare it to its **own major scale**. For example, D Dorian is built from the C major scale, but you must compare it to **D major** to see how it deviates:

• **D** Major = D–E–F♯–G–A–B–C♯

- D Dorian = D-E-F-G-A-B-C
- → Differences: b3 and b7

Each mode has a unique interval formula relative to its own root:

Mode Formula (Intervals from Root) 1234567 Ionian Dorian 12 63 4 5 6 67 Phrygian 1 62 63 4 5 66 67 Lydian 123 \$4567 Mixolydian 123456 67 Aeolian 1 2 6 3 4 5 6 6 6 7 Locrian 1 62 63 4 65 66 67

4. Finding the Parent Scale of a Mode

To identify the parent scale of a mode, **count backward** using modal degrees:

- **D Mixolydian** → Mixolydian is the **5th** mode
- \rightarrow So, D is the 5th degree of **G Major**
- → G Major is the **parent scale** of D Mixolydian
- **F**# **Aeolian** → Aeolian is the **6th** mode
- → F# is the 6th degree of A Major
- → A Major is the **parent scale** of F# Aeolian

Even though the notes of a mode come from its parent major scale, the **sound is different** because the **root and tonal center** are different. F# Aeolian does **not** sound like A Major, even though they use the same notes.

Volume 2, Chapter 12: Experimenting with the Modes

1. Chord Types and Modal Associations

Now that you understand modes and chord families, you can begin **assigning modes to chord types**. Each mode fits naturally over a specific chord type because of its interval structure:

Chord Type Matching Modes

Major 7 Ionian, Lydian

Dominant 7 Mixolydian

Minor 7 Dorian, Phrygian, Aeolian

Minor 7_b5 Locrian

For example, over an Amaj7 chord, you could use:

- A lonian (A major scale)
- A Lydian (A major scale with a raised 4th)

Over a **dominant 7th chord** (like A7, A9, A13), you would typically use the **Mixolydian mode**, which has a **major third** but a **flat seventh**, making it distinctly different from the Ionian or Lydian modes.

2. Comparing the Minor Modes

Dorian, Aeolian, and Phrygian are all **minor modes**, but they differ in "brightness":

- Dorian Brightest (has major 6)
- Aeolian Moderate (natural minor)

• **Phrygian** – Darkest (has b2)

All three will work over a **minor 7** chord. Try experimenting over a **one-chord vamp** (like Gm7) and see how each mode affects the color of your soloing.

• Locrian and m7b5

The **Locrian** mode is unique: it's the only mode that fits over a **minor** 7**b**5 **chord**, due to its **b**5 **interval**. For example, over **Fm7b5**, you'd use **F Locrian**.

3. Using Modes Over Power Chords

Power chords (e.g., A5, E5, etc.) only contain a **root and fifth**, leaving the **third (major/minor identity)** ambiguous. This gives you **freedom to choose almost any mode**, as long as it doesn't contain a **b5**, which would clash with the power chord's perfect fifth.

All modes except Locrian are fair game over a power chord.
 Suggested Exercise

Pick a key (e.g., A major) and play through all the power chords derived from the scale:

• A5, B5, C#5, D5, E5, F#5, G#5

Even though G# is not diatonically stable (because it would form a diminished triad in the key of A), it still may sound good in this exercise due to the open-ended nature of power chords.

4. Most Commonly Used Modes

Ranked by usage:

- 1. **Ionian**
- 2. Aeolian
- 3. Mixolydian
- 4. Dorian
- 5. Phrygian
- 6. Lydian
- 7. Locrian